Introduction

Welcome to the Uncertainty Quantification Group, in the Department of Aeronautics and Astronautics at MIT. We are part of the Aerospace Computational Design Laboratory, as well as the MIT Center for Computational Science and Engineering and the MIT Statistics and Data Science Center, both within the MIT Schwarzman College of Computing.

Research Overview

Our research focuses on advancing foundational computational methodologies for uncertainty quantification, statistical inference, and machine learning in complex physical systems. Our methodological work is motivated by a wide variety of engineering and environmental applications.

We tackle a broad range of projects, but most involve aspects of a few core questions:

  • How to quantify confidence in computational predictions?
  • How to build or refine models of complex physical processes from indirect and limited observations?
  • What information is needed to drive inference, design, and control?

Featured Publications

X. Huan, J. Jagalur and Y. M. MarzoukOptimal experimental design: Formulations and computationsActa Numerica, 33 (2024), pp. 715-840.
A. Spantini, R. Baptista and Y. M. MarzoukCoupling techniques for nonlinear ensemble filteringSIAM Review, 64 (2022), pp. 921–953.
O. Zahm, T. Cui, K. J. H. Law, A. Spantini and Y. M. MarzoukCertified dimension reduction in nonlinear Bayesian inverse problemsMathematics of Computation, 91 (2022), pp. 1789–1835.
J. Zech and Y. M. MarzoukSparse approximation of triangular transports. Part II: the infinite dimensional caseConstructive Approximation, 55 (2022), pp. 987–1036.
J. Jagalur-Mohan and Y. M. MarzoukBatch greedy maximization of non-submodular functions: guarantees and applications to experimental designThe Journal of Machine Learning Research, 22 (2021), pp. 1–62.
View all publications